
Finding and fixing a
data-corruption
bug with the help of
the community
Patrick Stählin

PG16 rollout
● Added as an option to our platform with 16.1
● We started to get some data-corruption cases, that could

sometimes be resolved by recycling (promoting the standby)
● Only 0.15% of PG16 installations affected
● Only PG16 affected*
● We started rolling out 16.2 just two weeks before, so a lot of

maintenances being applied

* or so we thought

Error
Feb 27 13:02:47 postgresql-deadbeef-2 postgres[3244179]: [20-1]
pid=3234179,user=avnadmin,db=defaultdb,app=foo,client=192.168.1.22 ERROR: could not
read block 3 in file "base/102480/102484": read only 0 of 8192 bytes

Internal incident declared
● Following an initial suspicion that this will come to bite us, we

declared an internal incident and also removed the possibility
to create new PG16 instances

● We started to trace the origin of the error message and
(re)-discovered how PG writes to files

Google PG16 “could not read block”
0 usable results

Analyzing the error
ERROR: could not read block 3 in file "base/102480/102484": read only 0 of 8192
bytes

Database OID

pg_class.relfilenodeOffset in file (* 8 kB)

Files on-disk
$ tree /var/lib/postgresql/
[...]
base/
 102480/
 102484
 102484_fsm
 102484_vm
 [...]

Data storage
● Files of up to 1GB
● Linked by pg_class.relfilenode
● Files grow on-demand
● Organized in pages/blocks of 8kB

Page layout

How PG organizes its data

…

page 0

page 1

page 2

…

To the source!
$ ack ‘could not read block’

src/backend/storage/smgr/md.c
782: errmsg(" could not read block %u in file \"%s\": %m",
798: errmsg(" could not read block %u in file \"%s\": read only %d of %d bytes",

src/backend/storage/smgr/md.c

nbytes = FileRead(...)

if (nbytes != BLCKSZ)
{
 if (nbytes < 0)
 ereport("could not read block %u in file \"%s\": %m", …);

 if (!InRecovery && !zero_damaged_pages)
 ereport(“could not read block %u in file \"%s\": read only %d of %d bytes",

src/backend/storage/smgr/md.c

nbytes = FileRead(...)

if (nbytes != BLCKSZ)
{
 if (nbytes < 0)
 ereport("could not read block %u in file \"%s\": %m", …);

 if (!InRecovery && !zero_damaged_pages)
 ereport(“could not read block %u in file \"%s\": read only %d of %d bytes",

👍 No corruption in the file, itʼs “just shortˮ

Who you gonna call?
pgsql-bugs!

Reaching out to the community

Reaching out to the community, again

FSM, or where to write?

…

Free Space Map (FSM)
● Can return the next page/block with at least N bytes of space
● Rebuilt on VACUUM FULL
● Rebuilt on ANALYZE FULL if missing
● Stored in base/<db_oid>/<pg_class.relfileid>_fsm

Where to write?

…

FSM

7 bytes

32 bytes

220 bytes

block 0

block 1

…

Detecting FSM errors
postgres defaultdb= # SELECT oid AS reloid,
 pg_relation_filepath(oid) || '_fsm' AS fsm
FROM pg_catalog.pg_class,
 CAST(pg_catalog.current_setting('block_size') AS bigint) AS bs
WHERE relkind IN ('r', 'i', 't', 'm') AND EXISTS
 (SELECT 1 FROM
 generate_series(pg_catalog.pg_relation_size(oid) / bs,
 (pg_catalog.pg_relation_size(oid, 'fsm') - 2*bs) / 2) AS blk
 WHERE freespacemap.pg_freespace(oid, blk) > 0);
 reloid │ fsm
────────┼───────────────────────
 18265 │ base/16421/112775_fsm
 18255 │ base/16421/112677_fsm
 18079 │ base/16421/112654_fsm
 18274 │ base/16421/112780_fsm
(4 rows)

From https://wiki.postgresql.org/wiki/Free_Space_Map_Problems

https://wiki.postgresql.org/wiki/Free_Space_Map_Problems

Fixing it (temporarily)
● Rebuild it by VACUUM FULL

○ - locks the relation
○ + fixes it without restart

● Remove FSM and rebuild it (+ no locking, - restart)
○ CHECKPOINT; CHECKPOINT;
○ systemctl postgresql-16 stop
○ rm base/<db_oid>/<pg_class.relfileid>_fsm
○ systemctl postgresql-16 start
○ ANALYZE FULL foo;

Fixing it (by cheating)
● We have a custom extension where we can add functionality

○ We added a pg_truncate_freespace function to
remove the FSM with just a short exclusive lock

● The patch has also submitted to be added to the
pg_freespace extension but it was deemed a bit too
dangerous

Getting some actionable feedback

Looking at the root cause again
● Focus on FSM corruption cases
● Look at and dump WAL files for small-ish relations/FSMs, as

the error seems to propagate

Write path for a single tuple
● We consult the FSM to get a page with enough space
● If, after locking the page, we donʼt see enough free space,

move to the next one
● If all pages are full, grow the file by one page

Growing a file
● Changed slightly in PG16
● We now count all the processes holding a lock and allocate

“enough for everybodyˮ™
● We knew that the bug exposes itself in that code-path
● But staring at it didnʼt make it easier to find

Growing a file
● Extend the FSM
● Extend the file
● Great success!

Extending the FSM
● Is WAL logged in certain conditions
● Extends the file by zeroed pages

Extending relation
● Is NOT WAL logged until something writes to it
● Extends the file by zeroed pages

Getting into an error state
● As long as everything stays on one machine there is no issue,

as the files on-disk are OK
● If you fail-over, do a restore or a PITR you can end up with the

WAL-record already applied to the FSM but no data written to
the relation.

● This got amplified as we started to allocate more space for all
waiting backends, making it easier to hit.

Consequences
● If the FSM points to a block that is beyond the file boundary we

would just fail a write
● This would fail the transaction and issue a rollback
● It can be self-corrected by needing more space than is

available in a single block, then the underlying relation would
be extended again.

● This made it very difficult to reproduce as the right amount of
data is needed.

How to fix it (from Noah Misch)?

Naive approach
● If the FSM points to a block that is beyond the file check it in

the caller and report it as full
● The problem is that this is at least one system call per tuple

insert
● Noticeable slow-down in benchmarks we ran 1.25%

Refined approach by Noah
● When finding a FSM entry
● Check the size of the relation
● This is still a system-call, but it gets cached on a process-level
● Slow down by 0.1%
● Patched as of 16.3 and backpatched

Take aways
● Talk to the community, even if your initial investigation turns out

to find nothing. Your findings will help another person.
● Test and release new versions, new PG versions are very

stable
● Monitor your systems/logs!
● If you have the possibility to ship your own extension (or PG

version), you can react very quickly to reduce operational load.

Thank you!

Senior Software Developer, Aiven

Member of the PostgreSQL team at Aiven

patrick.staehlin@aiven.io

Patrick Stählin

https://linkedin.com/in/patrickstaehlin

Feedback →

