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PG16 rollout
● Added as an option to our platform with 16.1
● We started to get some data-corruption cases, that could 

sometimes be resolved by recycling (promoting the standby)
● Only 0.15% of PG16 installations affected
● Only PG16 affected*
● We started rolling out 16.2 just two weeks before, so a lot of 

maintenances being applied

* or so we thought



Error
Feb 27 13:02:47 postgresql-deadbeef-2 postgres[3244179]: [20-1] 
pid=3234179,user=avnadmin,db=defaultdb,app=foo,client=192.168.1.22 ERROR:  could not 
read block 3 in file "base/102480/102484": read only 0 of 8192 bytes



Internal incident declared
● Following an initial suspicion that this will come to bite us, we 

declared an internal incident and also removed the possibility 
to create new PG16 instances

● We started to trace the origin of the error message and 
(re)-discovered how PG writes to files



Google PG16 “could not read block”
0 usable results



Analyzing the error
ERROR:  could not read block 3 in file "base/102480/102484": read only 0 of 8192 
bytes

Database OID

pg_class.relfilenodeOffset in file (* 8 kB)



Files on-disk
$ tree /var/lib/postgresql/
[...]
base/
  102480/
     102484
     102484_fsm
     102484_vm
     [...]



Data storage
● Files of up to 1GB
● Linked by pg_class.relfilenode
● Files grow on-demand
● Organized in pages/blocks of 8kB



Page layout



How PG organizes its data

…

page 0

page 1

page 2

…



To the source!
$ ack ‘could not read block’

src/backend/storage/smgr/md.c
782:      errmsg(" could not read block  %u in file \"%s\": %m",
798:      errmsg(" could not read block  %u in file \"%s\": read only %d of %d bytes",



src/backend/storage/smgr/md.c

nbytes = FileRead(...)

if (nbytes != BLCKSZ)
{
    if (nbytes < 0)
       ereport( "could not read block %u in file \"%s\": %m", … );

    if (!InRecovery && !zero_damaged_pages)
       ereport(“could not read block %u in file \"%s\": read only %d of %d bytes",



src/backend/storage/smgr/md.c

nbytes = FileRead(...)

if (nbytes != BLCKSZ)
{
    if (nbytes < 0)
       ereport( "could not read block %u in file \"%s\": %m", …);

    if (!InRecovery && !zero_damaged_pages)
       ereport(“could not read block %u in file \"%s\": read only %d of %d bytes",

👍 No corruption in the file, itʼs “just shortˮ



Who you gonna call?
pgsql-bugs!



Reaching out to the community



Reaching out to the community, again



FSM, or where to write?

…



Free Space Map (FSM)
● Can return the next page/block with at least N bytes of space
● Rebuilt on VACUUM FULL
● Rebuilt on ANALYZE FULL  if missing
● Stored in base/<db_oid>/<pg_class.relfileid>_fsm



Where to write?

…

FSM

7 bytes

32 bytes

220 bytes

block 0

block 1

…



Detecting FSM errors
postgres defaultdb= # SELECT oid AS reloid,
       pg_relation_filepath(oid) || '_fsm' AS fsm
FROM pg_catalog.pg_class,
     CAST(pg_catalog.current_setting('block_size') AS bigint) AS bs
WHERE relkind IN ('r', 'i', 't', 'm') AND EXISTS
  (SELECT 1 FROM
   generate_series(pg_catalog.pg_relation_size(oid) / bs,
                   (pg_catalog.pg_relation_size(oid, 'fsm') - 2*bs) / 2) AS blk
   WHERE freespacemap.pg_freespace(oid, blk) > 0);
 reloid │          fsm          
────────┼───────────────────────
  18265 │ base/16421/112775_fsm
  18255 │ base/16421/112677_fsm
  18079 │ base/16421/112654_fsm
  18274 │ base/16421/112780_fsm
(4 rows)

From https://wiki.postgresql.org/wiki/Free_Space_Map_Problems

https://wiki.postgresql.org/wiki/Free_Space_Map_Problems


Fixing it (temporarily)
● Rebuild it by VACUUM FULL

○ - locks the relation
○ + fixes it without restart

● Remove FSM and rebuild it (+ no locking, - restart)
○ CHECKPOINT; CHECKPOINT;
○ systemctl postgresql-16 stop
○ rm base/<db_oid>/<pg_class.relfileid>_fsm
○ systemctl postgresql-16 start
○ ANALYZE FULL foo;



Fixing it (by cheating)
● We have a custom extension where we can add functionality

○ We added a pg_truncate_freespace  function to 
remove the FSM with just a short exclusive lock

● The patch has also submitted to be added to the 
pg_freespace  extension but it was deemed a bit too 
dangerous



Getting some actionable feedback



Looking at the root cause again
● Focus on FSM corruption cases
● Look at and dump WAL files for small-ish relations/FSMs, as 

the error seems to propagate



Write path for a single tuple
● We consult the FSM to get a page with enough space
● If, after locking the page, we donʼt see enough free space, 

move to the next one
● If all pages are full, grow the file by one page



Growing a file
● Changed slightly in PG16
● We now count all the processes holding a lock and allocate 

“enough for everybodyˮ™
● We knew that the bug exposes itself in that code-path
● But staring at it didnʼt make it easier to find



Growing a file
● Extend the FSM
● Extend the file
● Great success!



Extending the FSM
● Is WAL logged in certain conditions
● Extends the file by zeroed pages



Extending relation
● Is NOT WAL logged until something writes to it
● Extends the file by zeroed pages



Getting into an error state
● As long as everything stays on one machine there is no issue, 

as the files on-disk are OK
● If you fail-over, do a restore or a PITR you can end up with the 

WAL-record already applied to the FSM but no data written to 
the relation.

● This got amplified as we started to allocate more space for all 
waiting backends, making it easier to hit.



Consequences
● If the FSM points to a block that is beyond the file boundary we 

would just fail a write
● This would fail the transaction and issue a rollback
● It can be self-corrected by needing more space than is 

available in a single block, then the underlying relation would 
be extended again.

● This made it very difficult to reproduce as the right amount of 
data is needed.



How to fix it (from Noah Misch)?



Naive approach
● If the FSM points to a block that is beyond the file check it in 

the caller and report it as full
● The problem is that this is at least one system call per tuple 

insert
● Noticeable slow-down in benchmarks we ran 1.25%



Refined approach by Noah
● When finding a FSM entry
● Check the size of the relation
● This is still a system-call, but it gets cached on a process-level
● Slow down by 0.1%
● Patched as of 16.3 and backpatched



Take aways
● Talk to the community, even if your initial investigation turns out 

to find nothing. Your findings will help another person.
● Test and release new versions, new PG versions are very 

stable
● Monitor your systems/logs!
● If you have the possibility to ship your own extension (or PG 

version), you can react very quickly to reduce operational load.



Thank you!
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