@« aiven

Finding and fixing a
data-corruption
bug with the help of

the community
Patrick Stahlin




PGI16 rollout

e Added as an option to our platform with 16.1

e We started to get some data-corruption cases, that could
sometimes be resolved by recycling (promoting the standby)

e Only 015% of PG16 installations affected

e Only PG16 affected*

e We started rolling out 16.2 just two weeks before, so a lot of
maintenances being applied

* or so we thought




Error

Feb 27 13:02:47 postgresqgl-deadbeef-2 postgres[3244179]: [20-1]
pid=3234179,user=avnadmin, db=defaultdb, app=foo,client=192.168.1.22 ERROR: could not
read block 3 in file "base/102480/102484": read only 0 of 8192 bytes




Internal incident declared

e Following an initial suspicion that this will come to bite us, we
declared an internal incident and also removed the possibility
to create new PG16 instances

e We started to trace the origin of the error message and
(re)-discovered how PG writes to files




Google PG16 “could not read block”

O usable results




Analyzing the error

ERROR: could not read block 3 in file "base/102480/102484": read only 0 of 8192

= e |

Offset in file (* 8 kB) _
pg_class.relfilenode

Database OID




Files on-disk

$ tree /var/lib/postgresql/
[...]
base/
102480/
102484
102484 fsm
102484 vm
[...]



Data storage

Files of up to 1GB

Linked by pg class.relfilenode
Files grow on-demand

Organized in pages/blocks of 8kB




Page layout

PageHeaderData ItemId ItemId
vy
q-===- Item Item Special




How PG organizes its data

PageHeaderData [ ItemId ‘ ItemId } 77777777 »
v l
€----- Item I Item Special
PageHeaderData ItemId [ ItemId k 77777777 »
\/ l
4----- Item [ Item Special
PageHeaderData ItemId ‘ ItemId } ———————— »
\ l
4----- Item | Item Special
PageHeaderData ItemId l ItemId } ———————— >
\/ l
4----- Item l Item Special
PageHeaderData ItemId ‘ ItemId } ———————— >
\ l
4----- Item | Item Special
PageHeaderData ItemId l ItemId } ———————— >

Special

page O

page 1

page 2




To the source!

S ack ‘could not read block’

src/backend/storage/smgr/md.c

782: errnsg (" EMIGINOUISCEUNBIOEN u in file \"$s\":
798: errmsg (" EONIGNMOUNRCHONBIOEI u in file \"%s\":

[ "
sm",

read only %d of %d byte



src/backend/storage/smgr/md.c

nbytes = FileRead (...)

if (nbytes != BLCKSZ)

{
if (nbytes < 0)

ereport ( "could not read block %u in file \"%s\": %m", ..);
if (!InRecovery && !zero damaged pages)

ereport (“could not read block %$u in file \"%s\": read only %d of %




src/backend/storage/smgr/md.c

nbytes = FileRead (...)

if (nbytes != BLCKSZ)

{
if (nbytes < 0)

ereport ( "could not read block %u in file \"%s\": %sm", ..);
if (!InRecovery && !zero damaged pages)
ereport (“could not read block %u in file \"%s\": read only %d of %d

No corruption in the file, it's “just short”




Who you gonna call?

pgsql-bugs!




Reaching out to the community

Could not read block at end of the relation

From: Ronan Dunklau <ronan(dot)dunklau(at)aiven(dot)io>

To: pgsql-bugs <pgsql-bugs(at)lists(dot)postgresql(dot)org>

Subject: Could not read block at end of the relation

Date: 2024-02-27 10:34:14

Message-1D:1878547.tdWV9SEqCh@aivenlaptop

Views: Raw Message | Whole Thread | Download mbox | Resend email

Thread: 2024-02-27 10:34:14 from Ronan Dunklau <ronan(dot)dunklau(at)aiven(dot)io>
Lists: pgsql-bugs

Hello,

I'm sorry as this will be a very poor bug report. On PG16, I'm am experiencing
random errors which share the same characteristics:

- happens during heavy system load

- lots of concurrent writes happening on a table

- often (but haven't been able to confirm it is necessary), a vacuum is running
on the table at the same time the error is triggered

Then, several backends get the same error at once "ERROR: could not read

block XXXX in file "base/XXXX/XXXX": read only @ of 8192 bytes", with different
block numbers. The relation is always a table (regular or toast). The blocks
are past the end of the relation, and the different backends are all trying to
read a different block. The offending queries are either an INSERT / UPDATE /
COPY.

4



Reaching out to the community, again

From: Ronan Dunklau <ronan(dot)dunklau(at)aiven(dot)io>

To: pgsql-bugs <pgsql-bugs(at)lists(dot)postgresql(dot)org>

Subject: FSM Corruption (was: Could not read block at end of the relation)
Date: 2024-03-01 08:56:51
Message-1D:1958255.PYKUYFuaPT@aivenlaptop

Views: Raw Message | Whole Thread | Download mbox | Resend email
Lists: pgsql-bugs

Le mardi 27 février 2024, 11:34:14 CET Ronan Dunklau a écrit :

> I suspected the FSM could be corrupted in some way but taking a look at i
> just after the errors have been triggered, the offending (non

> existing)blocks are just not present in the FSM either.

I think I may have missed something on my first look. On other affected
clusters, the FSM is definitely corrupted. So it looks like we have an FSM
corruption bug on our hands.




FSM, or where to write?

PageHeaderData [ ItemId ‘ ItemId } 77777777 »
v l
€----- Item I Item Special
PageHeaderData ItemId [ ItemId k 77777777 »
\/ l
4----- Item [ Item Special
PageHeaderData ItemId ‘ ItemId }» ———————— »
\ l
4----- Item | Item Special
PageHeaderData ItemId l ItemId }» ———————— >
\/ l
4----- Item l Item Special
PageHeaderData ItemId ‘ ItemId }» ———————— >
\ l
4----- Item | Item Special
PageHeaderData ItemId l ItemId }» ———————— >

4----- | Item l Item Special




Free Space Map (FSM)

Can return the next page/block with at least N bytes of space
Rebuilt on VACUUM FULL

Rebuilt on ANALYZE FULL if missing

Stored in base/<db _o0id>/<pg class.relfileid> fsm




here to write?

/ bytes

FSM
32 bytes

PageHeaderData | Itemld | ItemId f--------

4-----| Item Tten Special
PageHeaderData | Itenld | Itenld

4-----| Tten Tten Special
PageHeaderdata | Itenld | Itenld [--

q-----| Tten Tten Special
PageeaderData | Itemld | ItemId [--------

4] Tten Tten Special
PageHeaderdata | Itemld | Itenld f--------

4-----| Iten Tten Special
PageHeaderData | Itenld | Itemld [--------

- Tten Tten Special

block O
block 1




Detecting FSM errors

postgres defaultdb= # SELECT oid AS reloid,
pg_relation filepath(oid) || ' fsm' AS fsm
FROM pg catalog.pg class,
CAST (pg_catalog.current setting('block size') AS bigint) AS bs

WHERE relkind IN ('r', 'i', 't', 'm') AND EXISTS

(SELECT 1 FROM

generate series(pg catalog.pg relation size(oid) / bs,

(pg _catalog.pg relation size(oid, 'fsm') - 2*bs) / 2) AS blk
WHERE freespacemap.pg freespace(oid, blk) > 0);

reloid fsm

|
I
18265 | base/16421/112775 fsm
|
|
|

18255 base/16421/112677 fsm

18079 base/16421/112654 fsm

18274 | base/16421/112780 fsm
(4 rows)

From https://wiki.postgresqgl.org/wiki/Free_Space_Map_Problems



https://wiki.postgresql.org/wiki/Free_Space_Map_Problems

Fixing it (temporarily)

e Rebuild it by VACUUM FULL

(@)

(@)

- locks the relation
+ fixes it without restart

e Remove FSM and rebuild it (+ no locking, - restart)

(@)

o O O O

CHECKPOINT; CHECKPOINT;

systemctl postgresql-16 stop

rm base/<db_oid>/<pg_class.relfileid>_fsm
systemctl postgresql-16 start

ANALYZE FULL foo;



Fixing it (by cheating)

e We have a custom extension where we can add functionality
o We added a pg truncate freespace function to
remove the FSM with just a short exclusive lock
e The patch has also submitted to be added to the
pg freespace extension but it was deemed a bit too
dangerous




Getting some actionable feedback

On Fri, Mar 01, 2024 at ©9:56:51AM +@100@, Ronan Dunklau wrote:

> I think I may have missed something on my first look. On other affected

> clusters, the FSM is definitely corrupted. So it looks like we have an FSM
> corruption bug on our hands.

What corruption signs did you observe in the FSM? Since FSM is intentionally
not WAL-logged, corruption is normal, but corruption causing errors is not
normal. That said, if any crash leaves a state that the freespace/README
"self-correcting measures" don't detect, errors may happen. Did the clusters
crash recently?



Looking at the root cause again

e Focus on FSM corruption cases
e Look at and dump WAL files for small-ish relations/FSMs, as
the error seems to propagate




Write path for a single tuple

e We consult the FSM to get a page with enough space

e If, after locking the page, we don't see enough free space,
move to the next one

e If all pages are full, grow the file by one page




Growing a file

e Changed slightly in PG16

e We now count all the processes holding a lock and allocate
“enough for everybody"™

e We knew that the bug exposes itself in that code-path

e But staring at it didn't make it easier to find




Growing a file

e Extendthe FSM
e Extend the file
e Great success!




Extending the FSM

e |Is WAL logged in certain conditions
e Extends the file by zeroed pages




Extending relation

e |s NOT WAL logged until something writes to it
e Extends the file by zeroed pages




Getting into an error state

e Aslong as everything stays on one machine there is no issue,
as the files on-disk are OK

e If you fail-over, do a restore or a PITR you can end up with the
WAL-record already applied to the FSM but no data written to
the relation.

e This got amplified as we started to allocate more space for all
waiting backends, making it easier to hit.



Conseq uences

e If the FSM points to a block that is beyond the file boundary we
would just fail a write

e This would fail the transaction and issue a rollback

e It can be self-corrected by needing more space than is
available in a single block, then the underlying relation would
be extended again.

e This made it very difficult to reproduce as the right amount of
data is needed.




How to fix it (from Noah Misch)?

Is this happening after an 0S crash, a replica promote, or a PITR restore? If
so, I think I see the problem. We have an undocumented rule that FSM shall
not contain references to pages past the end of the relation. To facilitate
that, relation truncation WAL-logs FSM truncate. However, there's no similar
protection for relation extension, which is not WAL-logged. We break the rule
whenever we write FSM for block X before some WAL record initializes block X.
data_checksums makes the trouble easier to hit, since it creates FPI_FOR_HINT
records for FSM changes. A replica promote or PITR ending just after the FSM
FPI_FOR_HINT would yield this broken state. While v16 RelationAddBlocks()
made this easier to hit, I suspect it's reproducible in all supported
branches. For example, lazy_scan_new_oxr_empty() and multiple index AMs break
the rule via RecordPageWithFreeSpace() on a PagelsNew() page.

I think the fix is one of:

- Revoke the undocumented rule. Make FSM consumers resilient to the FSM
returning a now-too-large block number.

- Enforce a new "main-fork WAL before FSM" rule for logged rels. For example,
in each PagelsNew() case, either don't update FSM or WAL-log an init (like
lazy_scan_new_or_empty() does when PageIsEmpty()).



Naive approach

e If the FSM points to a block that is beyond the file check it in
the caller and report it as full

e The problem is that this is at least one system call per tuple
insert

e Noticeable slow-down in benchmarks we ran (+1.25%)




Refined approach by Noah

When finding a FSM entry
Check the size of the relation

This is still a system-call, but it gets cached on a process-level
Slow down by ~0.1%

Patched as of 16.3 and backpatched




Take aways

e Talk to the community, even if your initial investigation turns out
to find nothing. Your findings will help another person.

e Test and release new versions, new PG versions are very
stable

e Monitor your systems/logs!

e If you have the possibility to ship your own extension (or PG
version), you can react very quickly to reduce operational load.




Patrick Stahlin

Member of the PostgreSQL team at Aiven

(f) Senior Software Developer, Aiven in https://linkedin.com/in/patrickstaehlin

9 patrick.staehlin@aiven.io




